Å konvertere en desimal til en brøkform er ikke så vanskelig som det virker. Hvis du vil vite hvordan du gjør det, følger du disse trinnene.
Steg
Metode 1 av 2: For engangs desimaler
Trinn 1. Skriv ned desimalen
Hvis desimalen ikke gjentar seg, er det bare ett eller flere tall etter desimaltegnet. For eksempel bruker du ikke-gjentakende desimal 0, 325. Skriv det ned.
Trinn 2. Konverter desimalen til en brøk
For å gjøre dette, teller du antall sifre etter desimaltegnet. Ved 0, 325 er det 3 tall etter desimaltegnet. Så sett tallet "325" over tallet 1000, som faktisk er en 1 med 3 0 -er etter den. Hvis du bruker tallet 0, 3, som bare er 1 siffer etter desimaltegnet, kan du endre det til 3/10.
Du kan også si desimalen høyt. I dette tilfellet 0, 325 = "325 per tusen". Høres ut som skår! Skriv ned 0, 325 = 325/1000
Trinn 3. Finn den største fellesfaktoren (GCF) for den nye brøkets teller og nevner
Slik forenkler du brøker. Finn det største tallet som kan dele 325 og 1000. I dette tilfellet er GCF for begge 25 fordi 25 er det største tallet som kan dele begge tallene.
- Du trenger ikke umiddelbart lete etter FPB. Du kan bruke trial and error for å forenkle brøkdelen. For eksempel, hvis du har to partall, fortsett å dele dem med 2 til ett av dem blir et oddetall eller ikke kan forenkles. Hvis du har både et oddetall og et partall, prøv å dele med 3.
- Hvis du har et tall som ender på 0 eller 5, deler du det med 5.
Trinn 4. Del begge tallene med GCF for å forenkle brøken
Del 325 med 25 for å få 13 og del 1000 med 25 for å få 40. En enkel brøk er 13/40. Så 0, 325 = 13/40.
Metode 2 av 2: For gjentagelse av desimaler
Trinn 1. Skriv det ned
En gjentagende desimal er en desimal som har et uendelig gjentagende mønster. For eksempel er 2.345454545 en desimal som gjentar seg. Denne gangen løser vi det med x. Skriv ned x = 2, 345454545.
Trinn 2. Multipliser tallet med et multiplum på ti slik at den flytter den gjentatte delen av desimaltallet til venstre for desimaltegnet
For eksempel er multiplisering med 10 tilstrekkelig, så skriv "10x = 23, 45454545…." Du må fordi hvis du multipliserer høyre side av ligningen med 10, må du også multiplisere venstre side av ligningen med 10.
Trinn 3. Multipliser ligningen med et annet multiplum på 10 for å flytte flere tall til venstre for desimaltegnet
I dette eksemplet multipliserer du desimalen med 1000. Skriv, 1000x = 2345, 45454545 …. Du må gjøre dette fordi hvis du multipliserer høyre side av ligningen med 1000, må du også multiplisere venstre side av ligningen med 1000.
Trinn 4. Sett variabler og konstanter på samme side
Dette er gjort for å gjøre en reduksjon. Sett nå den andre ligningen ovenfor slik at 1000x = 2345, 45454545 er over 10x = 23, 45454545 er det samme som vanlig subtraksjon.
Trinn 5. Trekk fra
Trekk 10x fra 1000x for å få 990x og trekk fra 23, 45454545 fra 2345, 45454545 for å få 2322. Nå har du 990x = 2322.
Trinn 6. Finn verdien av x
Nå som du har 990x = 2322, kan du finne verdien av "x" ved å dele begge sider med 990. Så, x = 2322/990.
Trinn 7. Forenkle brøk
Del teller og nevner med den samme fellesfaktoren. Bruk GCF på både teller og nevner for å sikre at brøkdelen er på det enkleste. I dette eksemplet er GCF på 2322 og 990 18, så du kan dele 990 og 2322 med 18 for å forenkle telleren og nevneren til brøken. 990/18 = 129 og 2322/18 = 129/55. Dermed er 2322/990 = 129/55. Du har gjort.
Tips
- Øvelse gjør deg jevnere.
- Første gang du bruker denne metoden, anbefales et rent ark med skrapepapir og et viskelær.
- Bestandig sjekk det endelige svaret ditt. 2 5/8 = 2, 375 virker riktig. Men hvis du får verdien 32/1000 = 0,50, er det noe galt.
- Når du er flytende, kan disse spørsmålene løses på 10 sekunder med mindre du trenger å forenkle.